Weierstrass$506243$ - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Weierstrass$506243$ - Übersetzung nach Englisch

CONSTRUCTION FOR MINIMAL SURFACES
Enneper-Weierstrass Parameterization; Weierstrass representation; Enneper-Weierstrass parameterization; Weierstrass-Enneper parameterization; Enneper–Weierstrass parameterization
  • A catenary that spans periodic points on a helix, subsequently rotated along the helix to produce a minimal surface.
  • Lines of curvature make a quadrangulation of the domain
  • The fundamental domain (C) and the 3D surfaces. The continuous surfaces are made of copies of the fundamental patch (R3)
  • Weierstrass parameterization facilities fabrication of periodic minimal surfaces

Weierstrass      
n. Weierstrass, Nachname; Karl Wilhelm Weierstrass (1815-97), deutscher Mathematiker, Entwickler des Weierstrass Approximations Theorems

Wikipedia

Weierstrass–Enneper parameterization

In mathematics, the Weierstrass–Enneper parameterization of minimal surfaces is a classical piece of differential geometry.

Alfred Enneper and Karl Weierstrass studied minimal surfaces as far back as 1863.

Let f {\displaystyle f} and g {\displaystyle g} be functions on either the entire complex plane or the unit disk, where g {\displaystyle g} is meromorphic and f {\displaystyle f} is analytic, such that wherever g {\displaystyle g} has a pole of order m {\displaystyle m} , f {\displaystyle f} has a zero of order 2 m {\displaystyle 2m} (or equivalently, such that the product f g 2 {\displaystyle fg^{2}} is holomorphic), and let c 1 , c 2 , c 3 {\displaystyle c_{1},c_{2},c_{3}} be constants. Then the surface with coordinates ( x 1 , x 2 , x 3 ) {\displaystyle (x_{1},x_{2},x_{3})} is minimal, where the x k {\displaystyle x_{k}} are defined using the real part of a complex integral, as follows:

The converse is also true: every nonplanar minimal surface defined over a simply connected domain can be given a parametrization of this type.

For example, Enneper's surface has f(z) = 1, g(z) = zm.